

FAO-MOSAICC is developed in the framework of the EU/FAO Programme on "*Improved Global Governance for Hunger Reduction*".

MOSAICC

(for MOdelling System for Agricultural Impacts of Climate Change)

is a **system of models and utilities** designed

to carry out inter-disciplinary climate change impact assessment

on agriculture through simulations.

There are numerous climate change impact studies, **but**

most of them are <u>disconnected</u> from decision-making processes of stakeholders. others <u>lack a solid evidence-base</u> about current and future climate impacts as well as vulnerabilities at different spatial and temporal scales.

MOSAICC employs an <u>interdisciplinary assessment approach</u> to addressing climate change impacts and adaptation planning in the agriculture and food security sectors.

> An innovative software design supports participatory and integrated modelling environment in an interdisciplinary working group.

- Climate
- Hydrology
- Crop
- Forestry
- Economy

Downscaled climate projections under various **climate scenarios**

Robustness rather than sophistication flexibility, wide application, <u>open source</u> (minimum input data required, simple)

Processing Flow

<u>Climate Models and Scenarios (a)</u>

Coupled Model Intercomparison Project (CMIP5)

28 institutions involved and 61 models available

Models selected in MOSAICC depending on features and terms of use:

Name	Description	Institution	Terms of use	XR	YR
CanES M2	Canadian Earth System Model, 2 nd generation	Canadian Centre for Climate Modelling and Analysis	unrestricted	2.8	2.8
MIROC- ESM	Model for Interdisciplinary Research on Climate - Earth System Model	Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies	non- commercial only	2.8	2.8
MPI- ESM- MR	Max Planck Institute for Meteorology – Earth System Model – Mixed Resolution	Max Planck Institute for Meteorology (MPI-M)	unrestricted	1.9	1.9

CMIP5 model availability: http://cmip-pcmdi.llnl.gov/cmip5/availability.html

<u>Climate Models and Scenarios (b)</u>

Emissions scenarios describe future releases into the atmosphere of greenhouse gases, aerosols, and other pollutants and, along with information on land use and land cover, provide inputs to climate models. There are <u>40 different scenarios</u>, each making different assumptions for future greenhouse gas pollution, land-use and other driving forces.

These emissions scenarios are organized into <u>families</u> A1, A2, B1 and B2.

The *Representative Concentration Pathways* (RCP) are based on selected scenarios from four modelling teams/models working on integrated assessment modelling, climate modelling, and modelling and analysis of impacts.

RCP used in MOSAICC:

- <u>RCP 4.5</u>: Stabilization without overshoot pathway to 4.5 W/m² at stabilization after 2100
- → <u>RCP 8.5</u>: Rising radiative forcing pathway leading to 8.5 W/m² in 2100.

RCP 4.5 Optimistic

RCP 8.5 Pessimistic

<u>Climate Data Processing (a)</u>

Large scale predictors

Download

<u>Climate Data Processing (b)</u>

Climate Variables:

- Precipitation
- Min Temperature
- Max Temperatute
- PET (Et0)

3 Periods:

- 1980 2010: Real Data
- 1971 2000: Reanalysis Data
- 2010 2099: Future Data

<u>3 Uses</u>:

- Model Calibration
- Reference Time Sim.
- Future Time Simulation

3 Selected Models:

- CanESM2
- MIROC-ESM
- MPI-ESM MR

More than 20 models available in **CMIP5** (*Coupled Model* Intercomparison Project)

2 Scenarios

- RCP 4.5 (optimistic)
- RCP 8.5 (pessimistic)

Spatial Interpolation:

- Method = AURELHY (Analyse Utilisant le RELief pour les besoins de l'Hydrométéorologie)
- Resolution = 4 Km
- Grid Size = 385 x 362
- **Extent** = 16° x 15° (Lat = 21-36°N)

MOdelling System for Agricultural Impacts of Climate Change

<u>Climate Data: weather stations (38)</u>

<u>Climate Data: interpolated precipitation</u>

AURELHY Interpolation

Analyse Utilisant le RELief pour les besoins de l'Hydrométéorologie

Basic Idea: Use of topography to guide the spatial interpolation of climatic variables (precipitation and others)

Steps:

- 1) Terrain analysis
 - ✓ Mapping relative altitude differences of smoothed local topographies
 - ✓ PCA of local topography variables
- 2) Regression of climate variable against terrain
 - \checkmark Surface predicted by regression
- 3) Spatial interpolation of residuals by Kriging
- 4) Adding surface of interpolated residuals to surface predicted by regression

<u>Climate Data Processing in numbers</u>

	Real Data	Reference Time	Future Time
Stations	38	38	38
Variables	4	4	4
Models	1	3	3
Scenarios	0	0	2
Begin Year	1980	1971	2010
Final Year	2010	2000	2099
Records	1,719,880	4,993,200	29,959,200
Grids	4,464	12,960	77,760
Cells	622,147,680	1,806,235,200	10,837,411,200

<u>Climate Data-Set Table</u>

Climatologies start from the daily data at weather station level and provide to the other experts all the variables as dekadal and monthly data for each model and scenario

4 VAR *
3 MOD *
(2 SCEN + 1 REF) *
2 AGGR
=
72 Experiments

in 18 coherent data sets

PREC	TMIN	TMAX	PET	Time Step	Period	Scenario	Model
2650	2664	2663	2682	Monthly	1980-2010		
3009	3014	3013	3025	Monthly	1971-2000		CanESM2
3101	3108	3109	3114	Monthly	1971-2000		MIROC-ESM
3139	3142	3143	3148	Monthly	1971-2000		MPI-ESM MR
3011	3015	3017	3027	Monthly	2010-2099	RCP 4.5	CanESM2
3102	3110	3113	3115	Monthly	2010-2099	RCP 4.5	MIROC-ESM
3140	3144	3146	3149	Monthly	2010-2099	RCP 4.5	MPI-ESM MR
3012	3016	3018	3028	Monthly	2010-2099	RCP 8.5	CanESM2
3103	3112	3111	3116	Monthly	2010-2099	RCP 8.5	MIROC-ESM
3141	3145	3147	3150	Monthly	2010-2099	RCP 8.5	MPI-ESM MR
2651	2665	2667	2678	Dekadal	1980-2010		
2990	3004	2999	3006	Dekadal	1971-2000		CanESM2
3050	3078	3079	3084	Dekadal	1971-2000		MIROC-ESM
3117	3120	3121	3136	Dekadal	1971-2000		MPI-ESM MR
2991	3005	3002	3008	Dekadal	2010-2099	RCP 4.5	CanESM2
3051	3081	3082	3098	Dekadal	2010-2099	RCP 4.5	MIROC-ESM
3118	3122	3124	3137	Dekadal	2010-2099	RCP 4.5	2
2996	3007	3003	3010	Dekadal	2010-2099	RCP 8.5	CanESM2
3052	3080	3083	3100	Dekadal	2010-2099	RCP 8.5	1
3119	3123	3125	3138	Dekadal	2010-2099	RCP 8.5	2

Modeling Methodology

Parameters to evaluate the climate change impacts

Climate Variables:

- Precipitation
- Min Temperature
- Max Temperatute
- PET (Et0)

Water availability per basin:

- Tensift
- Sebou
- Moulouya
- Souss Massa Draa
- Loukkos
- Bouregreg
- Oum Er Rbia
- Sakia Alhamra Oued Eddahab
- Ziz Guir Rheriss

Yield on crops:

- Wheat
- Barley
- Olive
- Sugar beet
- Sugar canr
- Early tomato
- Seasonal tomato

Forestry Variables:

- Biomass
- Biologic diversity
- Establishments
- Forestry evolution
- Non forest products

Economic Parameters:

- Macro Indicators
 - GDP
- Domestic Market
 - Consumption
 - Production
 - Selfsufficiency
- External Trade:
 - Export
 - Import
 - Exchange Rate
- Price
 - Composite price
 - Output price
 - Aggregated producer price
- Factors
 - Water

Experiments by component executed in MOSAICC: **2562**

component	experiments	models
Climate	484	Climate Downscaling PET Hargreaves
Data Interpolation	420	PCA Preliminary Interpolation AURELHY Interpolation
Hydrology	867	DEM Processing STREAM Calibration STREAM Simulation
Crop	565	PLD WABAL AQUACROP
Forestry	143	LANDIS II
Economy	83	DCGE

Grid Features:

• 385 x 362 cells

resolution = 0.042° (~4 Km)

• 16 x 17°

Data Sets by format in MOSAICC: 2891

Data Format	Data Sets				
Raster	1238		Raster Da Gridded 7	ta Sets cai Fime Serie	n be s , tha
Polygon	703	5		eans <u>many</u>	<u>/ gria</u>
Point	189)	Years	Dekadal	Mon
			10	360	
Table	761		30	1080	
TOTAL	2891		90	3240	1

Climate Data	Main Usage
Dekadal (10 days)	Crop Modeling
Monthly	Hydrology, Forestry, Economy

Monthly

120

360

1080

DEM Processing: River Basins and Streamlines

DEM Processing: Moulouya basin

<u>Hydrology – Moulouya Water Availability</u>

Hydrology – Water Availability

Crop modeling

Crop modeling with crop mask

The intersection of the homogeneous polygons against the crop mask classifies them:

- red polygons doesn't allow crops
- green polygons are suitable for crops

The results of the crop modeling can be filtered and the red polygons ignored when analysing the results.

Forestry (LANDIS II)

Forestry (LANDIS II) - Maamora Forest (Rabat)

Ecoregions

Area: 70 x 40 Km

Forestry (LANDIS II) - Maamora Forest (Rabat)

Initial communities

Area: 70 x 40 Km

Forestry (LANDIS II) - Outputs

Economic Model (DCGE)

Dynamic Computable General Equilibrium

Equilibrium relates to the condition that supply equals demand in all markets

<u>Basic Idea</u>: the economists describe the current situation in the "*Social Accounting Matrix*" and then provide information about the shocks they imagine activities and commodities can have in the future.

MOSAICC provides the crop yield and water availability, that are calculated from the experts

Shocks are generated comparing the calculated values for a future scenario with they reference values:

- SHOCK = 1: no changes
- SHOCK < 1: negative evolution</p>
- SHOCK > 1: positive evolution

Economic Parameters:

- Macro Indicators
 - GDP
- Domestic Market
 - Consumption
 - Production
 - Selfsufficiency
- External Trade:
 - Export
 - Import
 - Exchange Rate
- Price
 - Composite price
 - Output price
 - Aggregated producer price
- Factors
 - Water

www.changementclimatique.ma

the new web portal to publish the results of MOSAICC

www.changementclimatique.ma

the new web portal to publish the results of MOSAICC

<u>Menu</u>

- Home
- Presentation
 - MOSAICC
 - Climate Change
 - Technical Architecture
 - Exchange Workshops
 - Resources
- Partners
 - National
 - International
- Data
 - CC Impact
 - Simulator
- Documentation
- Contacts

<u>CC Impact</u>

Simple point-and-click interface designed for decision makers with three views on the data:

- Variable Overview
- Single Variable Mode
- Comparison Mode Built-in PDF generation facility.

<u>Simulator</u>

WEB-GIS based interface for advanced users that offers highly configurable query system for detailed analysis

CC Impact :: Landing page

Crop Season Spring Summer Autumn Winter		Morocco Provinces	Communes Agro-Zones Basins
CanESM2 MIROC-ESM MPI-ESM MR AVERAGE			Differences <u>Values</u>
CLIMATE - Precipitation	2010 - 2039	2040 - 2069	2070 - 2099
- min		Optimistic Scenario (RCP 4	.5)
		Pessimistic Scenario (RCP 8	-5)
		Pessimistic Scenario (RCP 8	.5)
	mm (S = 25)	Pessimistic Scenario (RCP 8	.5)

Get printable version (PDF)

<u>CC Impact :: Top Bar</u>

 Period Selector It allows the user to select the period to display with a simple click on one of them: Crop Season (September-August) Spring Summer Autumn Winter 	Single Variable Mode Icon	 Aggregation Level Selector It allows the user to select the level of aggregation of the data with a simple click on one of them: Morocco Provinces Communes Agro-zones Basins
Crop Season Spring Summer Autumn Winter CanESM2 MIROC-ESM MPI-ESM MR <u>AVERAGE</u>		Morocco Provinces Communes <u>Agro-Zones</u> Basins Differences <u>Values</u>
Model Selector It allows the user to select the model to display with a simple click on one of them: • CanESM2 • MIROC-ESM • MPI-ESM-MR • AVERAGE	Compare Mode Icon	 Data Visualization Mode Selector It allows the user to select the mode to display the data with a simple click on one of them: Difference Values

<u>CC Impact :: Variable selector</u>

Crop Season Spring Summer Autumn Winter		Morocco	Provinces	Communes	Agro-Zones	Basins
CanESM2 MIROC-ESM MPI-ESM MR AVERAGE				D	ifferences	Values
CLIMATE - Precipitation		Variable sele Climate Precipita Min Tem Max Tem Nax Tem Potentia Hydrology Water Av Agriculture Barley Y Wheat Y Forestry Economy 	ector: ation peratu nperatu l Evapo vailabil vailabil 'ield 'ield	re ire otranspi	ration	
0.0	mm (S = 25)					475.0

Get printable version (PDF)

<u>CC Impact :: PDF Facility</u>

Crop Season Spring Summer Autumn Winte	er 🗖 🗖	Moroco	co Provinces	Communes Agro-Zones	Basins
CanESM2 MIROC-ESM MPI-ESM MR AVE	RAGE			Differences	Values
CLIMATE - Precipitation	PDF Facility		040 - 2069	2070 - 2099	
0.0	CC Impact provides displayed as simple or interactive) in a provension that can be of printed. The PDF file maps, data and char to the user's selection each page provides content.	the results maps (static rinter-friendly download and contains rts. It adapts on: therefore, a different	Scenario (RCP 4	3.5) 3.5)	475.0
	Get printable v	ersion (PDF)			

<u>CC Impact :: Overview to Details</u>

Crop Season Spring Summer Autumn Winter		Morocco Provinces	Communes Agro-Zones Ba	asins
CanESM2 MIROC-ESM MPI-ESM MR AVERAGE			Differences	Values
CLIMATE - Precipitation	2010 - 2039	2040 - 2069	2070 - 2099	
- min		Optimistic Scenario (RCP 4.	5)	
		Fessimistic Scenario (RCP 8		
0.0	mm (S = 25)			475.0
Click on the maps	to access the deta	ailed view		

MOdelling System for Agricultural Impacts of Climate Change

<u>CC Impact :: Detailed View</u>

Crop Season Spring Summer Autumn Winter		Morocco	Provinces	Communes	Agro-Zones	Basins
CanESM ₂ MIROC-ESM MPI-ESM MR AVERAGE				D	ifferences	Values
Crop Season Spring Summer Autumn Winter CanESM2 MIROC-ESM MPI-ESM MR AVERAGE	010-2039)	Morocco Char Prov Com: Agro Basin Map Refe: Dif. 9 30 20 10	Provinces t Data ince mune -Zone Nalue rence Value 6 0 Jan Feb Mar REC 2010-209	Communes D Apr May Jun Ju 39 RCP45 2010-	Differences Valu SIDI KACEM ZIRARA Favorable SEBOU 1,595.5 1,697.7 -102.3 -6 %	
		Min v Max Max	value 15.8 in <u>s</u> value 260.7 i difference 43	July in <u>February</u> 1.7 % in <u>August</u> ho man		r\/
-5.28509, 33.79505 0.0 mm (S = 25)	475.0	the	DB ar	nd get c	hart an	d

MOdelling System for Agricultural Impacts of Climate Change

<u>CC Impact :: Detailed View</u>

Crop Season Spring	Summer Autumn Winter			Morocco	o Provinces	Communes	Agro-Zones	Basins
CanESM2 MIROC-E	SM MPI-ESMMR AVERA	GE				Di	fferences	Values
CLIMATE - Precipitat	ion 🔹	Optimistic Future (2010	-2039)	Cha Pro Con Agy Bas	art Data ovince mmune ro-Zone sin		SIDI Fa	IKACEM ZIRARA Ivorable SEBOU
				Ma Ref	p Value ference Value			1,595.5 1,697.7
Enrich vour map	by adding			Dif				-102.1
extra information	layers			3			P	
	Favorab			1	0 Jan Feb Mar (Apr May Jun Ju	1 Aug Sep Oct	Nov Dec
300	si nut		Defavorable Ortental	-	PREC 2010-209	9 RCP45 2010-:	2039 <mark>—</mark> Ref	erence
Intermediare		3~	\frown	Mir. Max	1 value 15.8 in <u>J</u> x value 260.7 i:	l <u>uly</u> n Februarv		
	there is a set of the	ne s		Ma	x difference 43.	.7 % in <u>August</u>		
- f h	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			С	hange tl	ne perio	d or the	e
-4.93353, 34.8387	5			Va	ariable			
0.0	mr	n (S = 25)	475.0					

<u>CC Impact :: Compare View (a)</u>

MOSAICC

<u>CC Impact :: Compare View (b)</u>

NAME	VALUE	REFERENCE	DIF	% DIF
Defavorable Oriental	225.9	220.5	5.4	2.4 %
Defavorable Sud	274.9	260.2	14.7	5.4 %
Favorable	399.1	372.8	26.3	6.6 %
Intermediaire	274.1	252.3	21.8	7.9 %
Montagne	326.1	311.5	14.6	4.5 %
Saharienne	80.9	79.0	1.9	2.4 %

<u>CC Impact :: Compare View (b)</u>

Monthly average comparison

Name	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Defavorable Oriental	26.9 32.4 5.5 20.4 %	36.4 31.8 -4.6 -12.6 %	33.6 30.6 -3.0 -8.9 %	30.4 26.3 -4.1 -13.5 %	17.1 16.5 -0.6 -3.5 %	7.3 7.3 0.0 0.0 %	4.7 4.4 -0.3 -6.4 %	10.1 9.5 -0.6 -5.9 %	16.1 18.3 2.2 13.7 %	28.9 24.2 -4.7 -16.3 %	23.8 26.1 2.3 9.7 %	29.8 30.9 1.1 3.7 %
Defavorable Sud	38.9 41.5 2.6 6.7 %	44.7 39.6 -5.1 -11.4 %	41.1 36.4 -4.7 -11.4 %	36.0 30.4 -5.6 -15.6 %	15.0 14.2 -0.8 -5.3 %	5.4 5.3 -0.1 -1.9 %	4.3 3.8 -0.5 -11.6 %	8.5 8.1 -0.4 -4.7 %	12.9 13.8 0.9 7.0 %	33.6 26.6 -7.0 -20.8 %	33.1 33.9 0.8 2.4 %	34.6 38.1 3.5 10.1 %
Favorable	54.9 62.7 7.8 14.2 %	65.2 58.0 Time	57.9 49.6 Serie	51.6 45.0 S COM	22.7 21.0 paris	6.9 6.7 <mark>on by</mark>	4.0 3.6 area :	7.6 7.3	15.6 15.5	51.9 39.4 -12.5 -24.1 %	47.9 47.6 -0.3 -0.6 %	54.1 55.0 0.9 1.7 %
Intermediaire	41.0 44.0 3.0 7.3 %	nudif	 numeric values for each area in each month difference between them 							33.0 25.1 -7.9 -23.9 %	35.1 32.9 -2.2 -6.3 %	34.4 38.0 3.6 10.5 %
Montagne	43.4 47.3 3.9 9.0 %	Ever print	Everything available in PDF format ready for printing or sharing							39.5 31.6 -7.9 -20.0 %	35.6 38.5 2.9 8.1 %	41.4 43.9 2.5 6.0 %
Saharienne	9.5 10.6 1.1 11.6 %	11.9 10.3 -1.6 -13.4 %	11.6 10.1 -1.5 -12.9 %	10.0 8.8 -1.2 -12.0 %	5.2 5.6 0.4 7.7 %	3.3 3.1 -0.2 -6.1 %	2.7 2.5 -0.2 -7.4 %	6.6 6.6 0.0 0.0 %	9.4 11.3 1.9 20.2 %	10.3 8.9 -1.4 -13.6 %	7.9 8.8 0.9 11.4 %	10.2 10.2 0.0 0.0 %

Get printable version (PDF)