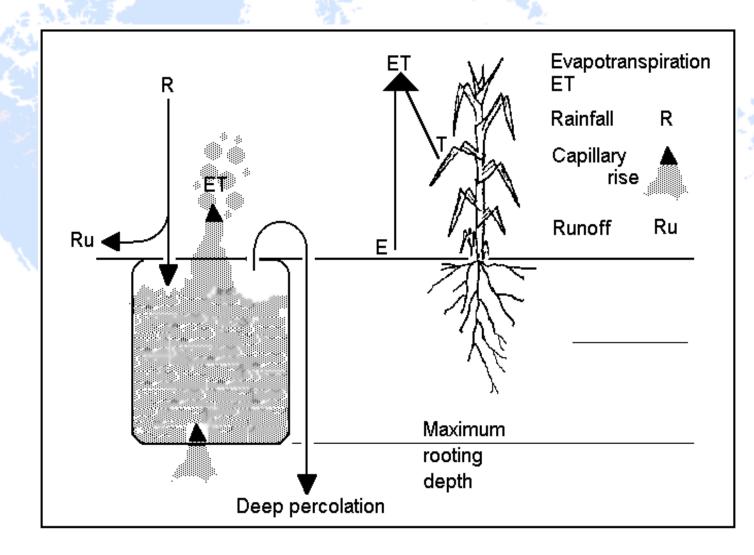
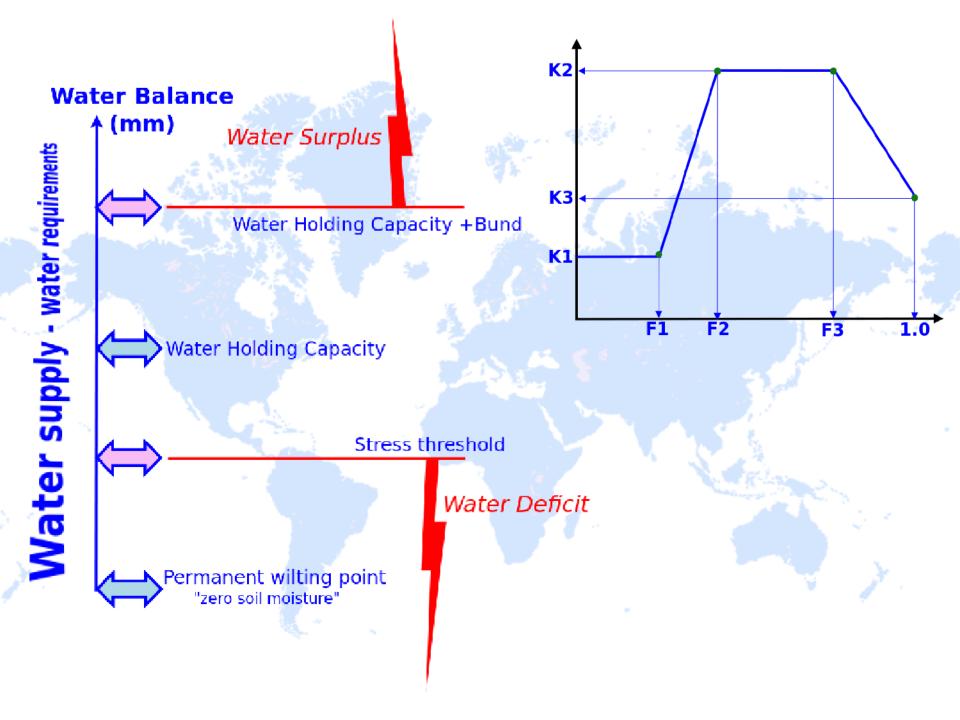
AMICAF/MOSAICC seminar ITCAF, Manila, 13-14 Sept. 2012


WABAL, one of the two crop model "engines" in MOSAICC, and PLD


René Gommes rene.gommes@agro-impact.com

WABAL implements the "impressionistic" FAO CSSWB

CSSWB in two slides

CSSWB characteristics

- Daily or 10-daily timestep
- One-layer soil with no root growth
- Fixed phenology through crop coefficients (Water requirement = KCr * ETP)
- ETa stays at potential rate unter all soil water is exausted
- Inputs: limited and compatible with many locations in developing countries (more below!)
- Outpouts: WSI, ET, surplus & deficit by phenophase

CSSWB illustrated with white maize planted in Muñoz at dekad 25, 1991

Run of 09-11-2012 at 13:05:27

Cycle length in dekads	12
# of preseason wabal dekads	5
Presseason Kcr	0.5
Water holding capacity in mm	100
Bund height in mm	0
Deficit threshold (0-1)	0.8
Excess water (Xi, mm) above which WSI_correction is applied	100
WSI_correction (%) when Excess>Xi (0 for no correction)	0
Irrigation ? Yes or No or Automatic I/N/A	N

CSSWB illustrated with white maize planted in Muñoz at dekad 25

Dek	phas	se KCr	rain	ETP	WatReq	Soilwat	TwatReg	[Def	Exc	ETA
1	0	0.500	114.5	47.9	24.0	90.6				
2	0	0.500	137.4	43.2	21.6	100.0				
3	0	0.500	66.5	40.5	20.3	100.0				
4	0	0.500	114.5	34.3	17.2	100.0				
5	0	0.500	218.9	45.6	22.8	100.0				
6	1	0.500	148.6	41.7	20.9	100.0	20.9	0.0	127.8	20.9
7	1	0.500	177.6	39.6	19.8	100.0	40.7	0.0	157.8	19.8
8	2	0.608	94.5	38.1	23.2	100.0	63.8	0.0	71.3	23.2
9	2	0.789	8.4	43.1	34.0	74.4	97.8	5.6	0.0	34.0
10	2	0.969	24.6	44.6	43.2	55.8	141.1	24.2	0.0	43.2
11	2	1.150	64.2	38.7	44.5	75.5	185.6	4.5	0.0	44.5
12	3	1.150	1.0	40.3	46.3	30.1	231.9	49.9	0.0	46.3
13	3	1.150	20.1	36.0	41.4	8.8	273.3	71.2	0.0	41.4
14	3	1.150	8.6	38.4	44.2	0.0	317.5	106.7	0.0	17.4
15	4	1.058	0.0	36.6	38.7	0.0	356.2	118.7	0.0	0.0
16	4	0.829	0.0	36.7	30.4	0.0	386.6	110.4	0.0	0.0
17	4	0.600	0.0	39.7	23.8	0.0	410.5	103.8	0.0	0.0

CSSWB illustrated with white maize planted in Muñoz at dekad 25

Total ETA	290.73
by phase	40.65
by phase	144.92
by phase	105.16
by phase	0.00
Total Surplus	356.87
by phase	285.55
by phase	71.32
by phase	0.00
by phase	0.00
Total Deficit	595.19
by phase	0.00
by phase	34.38
by phase	227.82
by phase	332.99
Total water requirement	410.46
WSI (raw)	70.83
WSI (corr. for surplus)	70.83

AMS water balance

WHCB=WHC+Bund

WatSup=WatSoil+Rain+I	rrigation
WatBal=WatSup-WatReq	
SELECT CASE WatBal	
CASE is >WHCB	
WExc=WatBal-WHC	В
WatSoil=WHCB	CA
WDef=0	
CASE WHC to WHCB	
WatSoil=WatBal	
WDef=0	END S
WExc=0	
CASE WHCstress to	WHC Eta=W
WatSoil=WatBal	IF Wa
WDef=0	
WExc=0	AutIr
CASE 0 to WHCstres	s IF Au
WatSoil=WatBal	Au
WDef=WHCstress-	WatBal Wa
WExc=0	end i

```
ASE is <0
 WatSoil=0
 Wdef=WHCstress-WatBal
 WExc=0
```

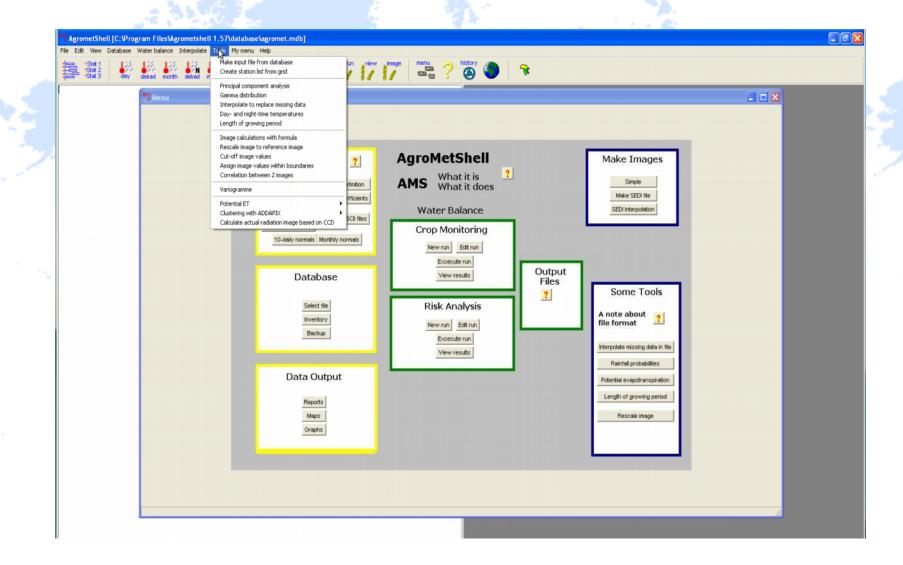
```
SELECT
```

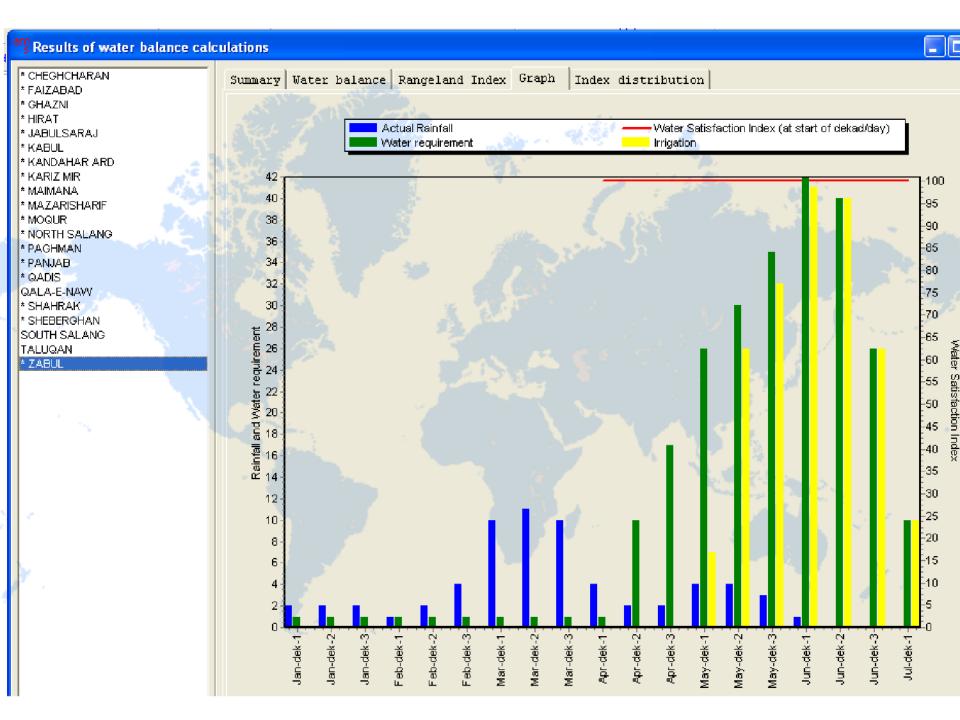
```
VatSup
```

atSup>WatReq **then** Eta=WatREq

rrig=0

tIrrigOn and WatBal<WHCstress THEN utIrrig=WDef atsoil=WHCstress


```
f
```


Required inputs

- Rainfall (mm), ten-daily
- "Evapotranspiration", (ETP), ten-daily
- Irrigation amounts (mm), ten daily
- Crop coefficients (KCr)
- Planting dates and cycle lengths

- Maximum soil moisture storage capacity
- "Evapotranspiration", (ETP), ten-daily
- Several very empirical parameters such as "index reduction for excess rain, preseason Kcr,water stress threshold

AMS graphical User interface

Use of CSSWB for yield impact assessments

Semi-quantitatively assess weather factors relevant for crop production and express them as valueadded agronomically meaningful indices (water balance variables, WBV)
Regress yields against WBVs, and use empirical regression equation for simulation
A detailed study was done in Morocco using the approach, without major difficulties

Overall philosophy of WABAL

- •WABAL is an industrial version of AMS
- •Industrial means:
 - Suitable for hundreds of thousands unattended CSSWB runs
 - Emphasis is on efficiency
 - Recyclability in different applications
 - No graphical user interface
 - Comes in three versions WB1, WB2 and WB3
 - Output can be absorbed directly in other application programmes

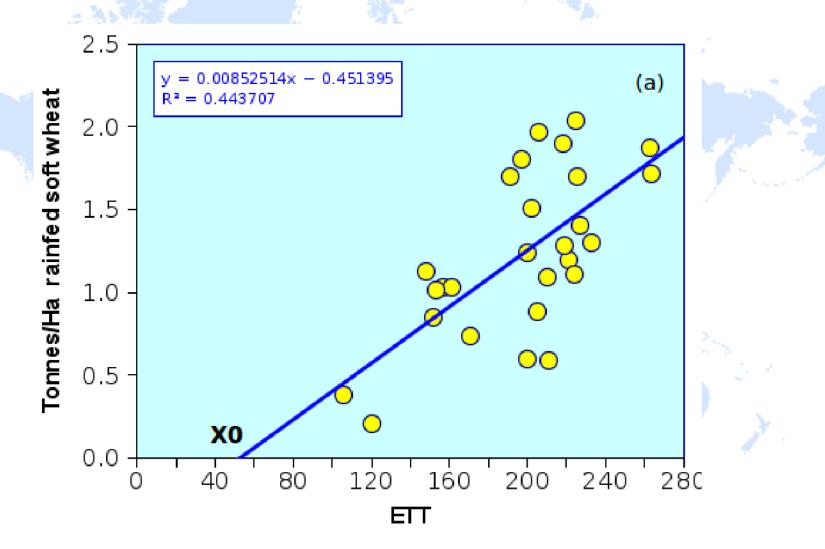
Sample WABAL input line

wb2 10 5 0.5 100 50 0.25 5 50 n v 0.2 0.5 0.8 0.5 1 0.5 21 22 231 24 25 10 11 12 13 14 15 161 171 18 19 23 22 21 120 19 18 17 16 151 141 131 12 11 10 9

CSSWB illustrated with white maize planted in Muñoz at dekad 25

Total ETA	290.73
by phase	40.65
by phase	144.92
by phase	105.16
by phase	0.00
Total Surplus	356.87
by phase	285.55
by phase	71.32
by phase	0.00
by phase	0.00
Total Deficit	595.19
by phase	0.00
by phase	34.38
by phase	227.82
by phase	332.99
Total water requirement	410.46
WSI (raw)	70.83
WSI (corr. for surplus)	70.83

CSSWB, as above (white maize, pl. in 1991, Muñoz, dekad 25): summary WABAL output & calibration matrix

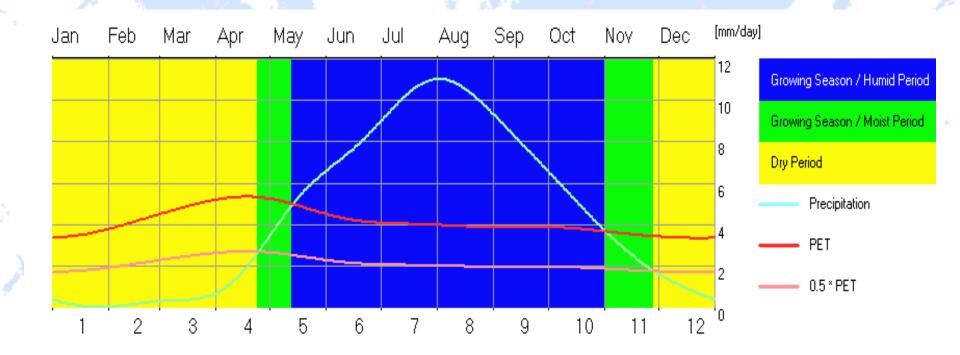

	Α	В	С	D	E	F	G	Н		J	K	
	#	cyc	pres	prkc	whc	bund	def	in-red%	ex-rain	n	V	
2	#	12	5	0.5	100	0	0.8	0	100	Ν	f	
3	year	eta-t	eta-i	eta-v	eta-f	eta-m	exc-t	exc-i	exc-v	exc-f	exc-m	ź
4	1991	290.7	40.6	144.9	105.1	0	356.8	285.5	71.3	0	0	
5	1992	280.5	38.5	149.4	92.5	0	150.5	150.5	0	0	0	
6	1993	352.2	40.7	143.9	130	37.3	322	204.8	117.2	0	0	
7	1994	257.9	42.5	158.9	43.1	13.3	169.9	133.9	36	0	0	L

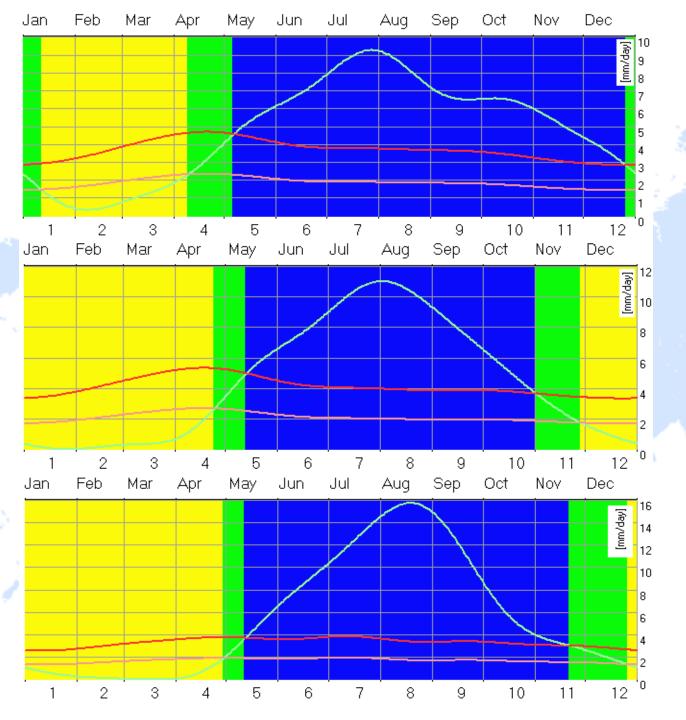
K	L	Μ	Ν	0	Р	Q	R	S
v	f1	f2	f3	k1	k2	k3	planted	
f	0.2	0.5	0.8	0.5	1.15	0.6	25	
exc-m	def-t	def-i	def-v	def-f	def-m	TWR	wsi	wsicorr
0	595.1	0	34.3	227.8	332.9	410	71	71
0	588	0	37.4	218	332.5	409	69	69
0	451.7	0	0	168.4	283.3	400	88	88
0	714.6	0	43.7	345	325.9	449	57	57

Most commonly occurring WABAL outputs in Morocco CC impact study

		DEF					
	FAV	or	sud	INT	MONT	SAH	n
ETt_rain	2	4	3	2			11
EXCf_rain	5		3	2			10
EXCt_rain	2	1	4		3		10
r_cyc_rain	2	1	2	1	2	2	10
DEFh_rain	4		1		1	3	9
smoist_cyc_irr	1	3	2		1	2	9
smoist_cyc_rain	2	1	1	2		2	8
ETf_rain	5			2			7
EXCv_rain		1	2		2	2	7
r_cyc_irr		2		5			7
ETi_rain	1	2	1	1		1	6
smoist_pres_irr	2	3				1	6

Soft wheat yield Vs ET (Morocco 1980-2007)

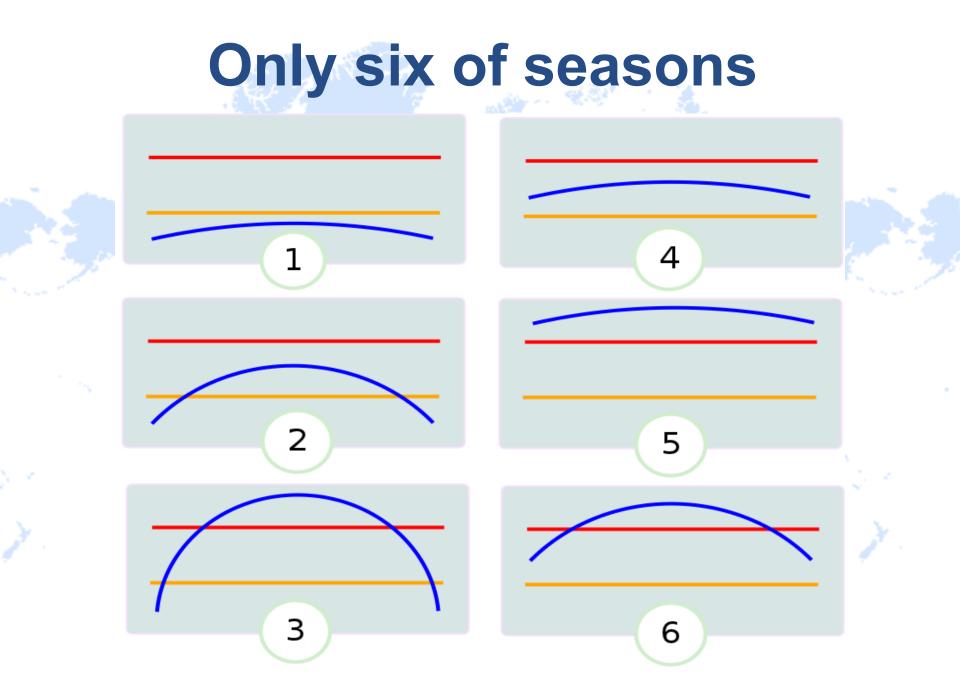



Items for discussion: how does the CSSWB model...

- Biomass accumulation (assimilation)?
- Phenology (or development) and biomass partitioning (incl. Respiration and root development) ?
- Nutrient budget ?
- Soil & plant water budget?

PLDEK and Franquin's method

Franquin's method illustrated: Cabanatuan (graph prepared with NewLOcClim)



Carranglan

Guimba

Zaragoza

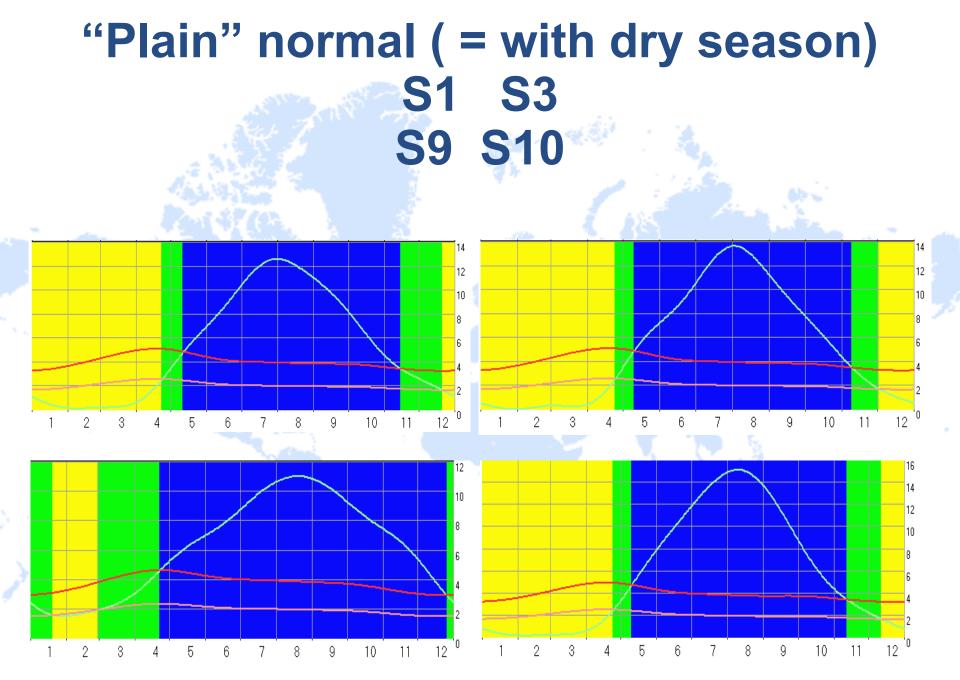
Types of seasons in Nueva Ecija

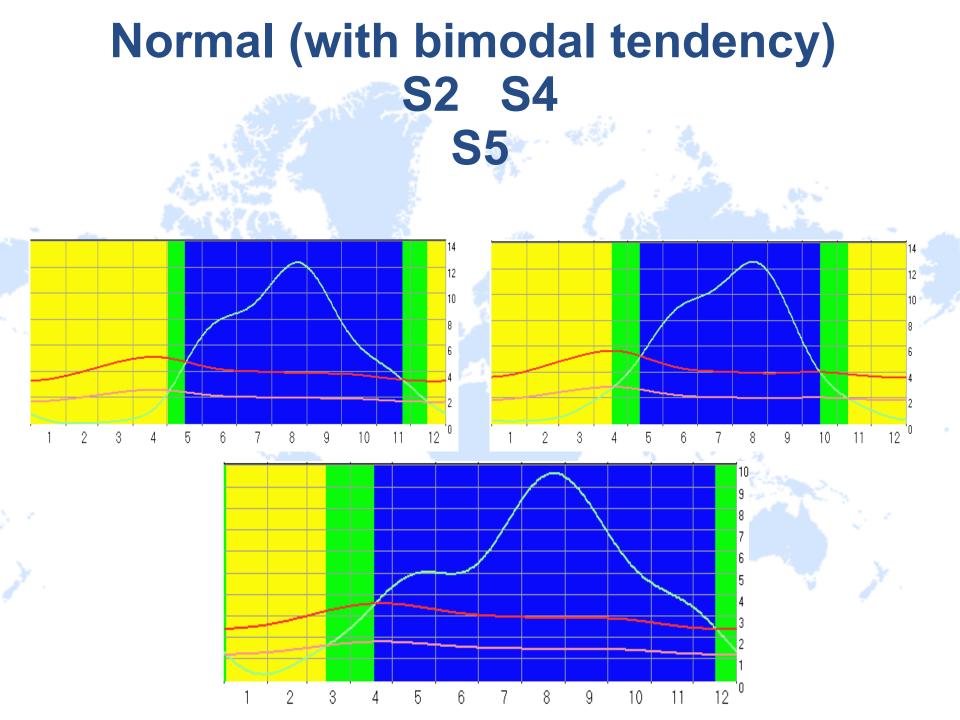
< 50 < 100 < 150 < 200 < 250 < 300 < 350

400 450 Normal: yellow

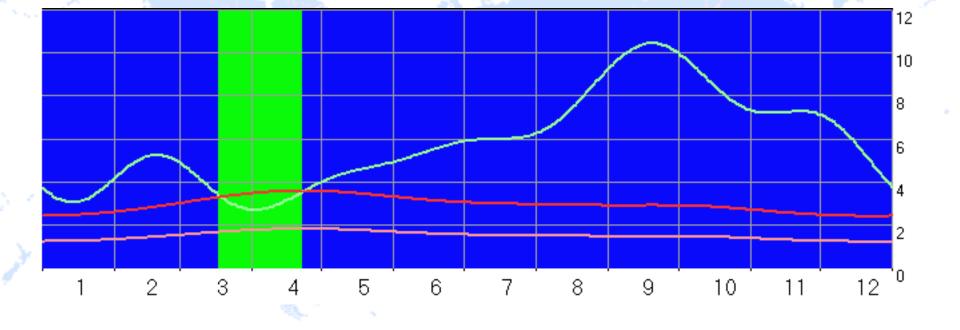
Intermediatehumid: green

S7

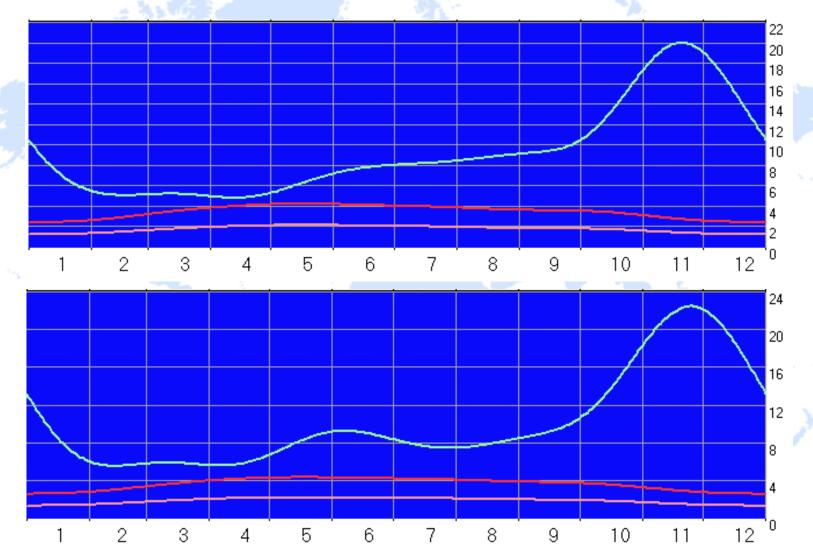

S6 •


S2

S10


S4

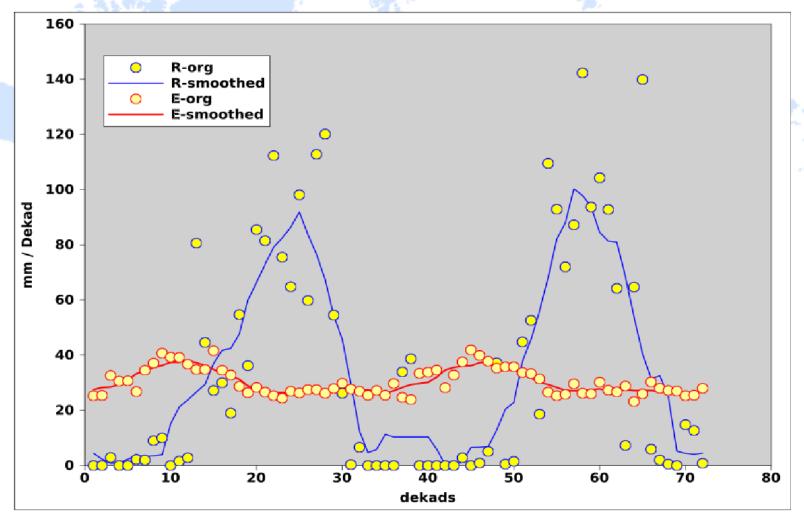
Humid: blue



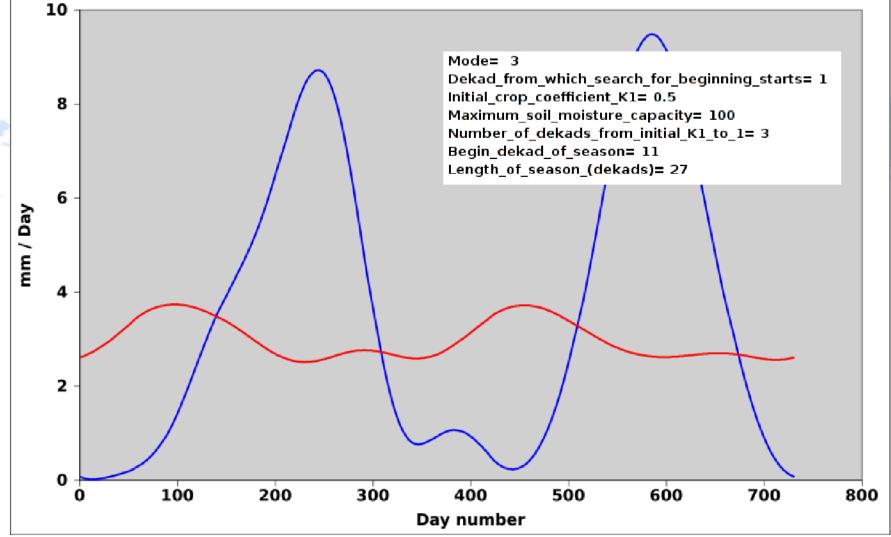
Intermediate-humid S6

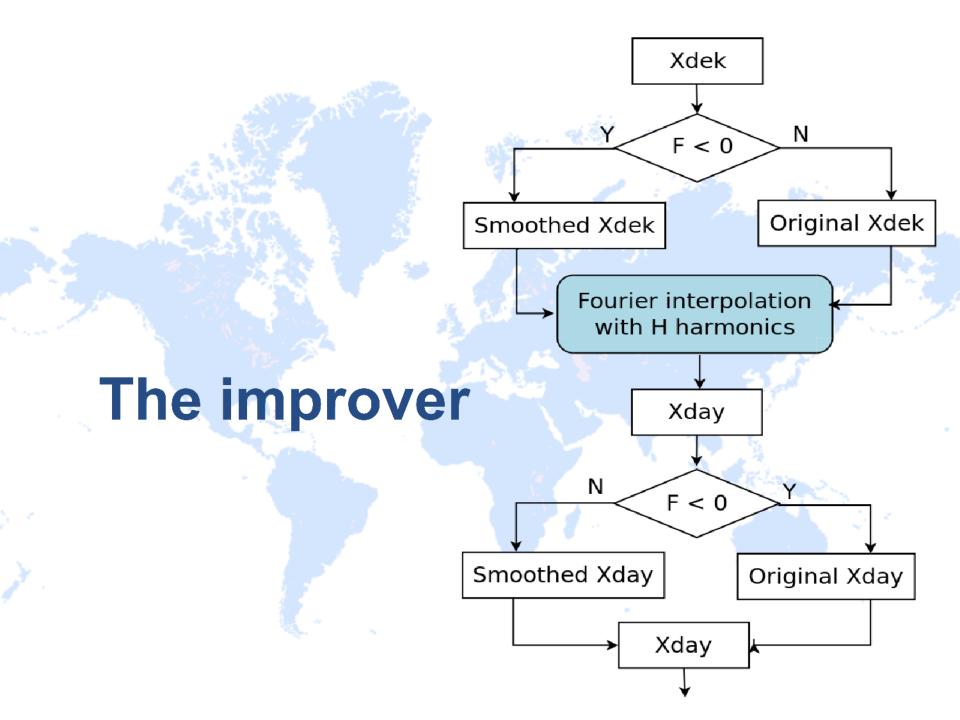
All-year-round humid S7 (top) S8 (bottom)

Type I – Two pronounced seasons: Dry from November to April, wet during rest of the year.


Type II – No dry season with a very pronounced rainfall from November to April and wet during rest of the year.

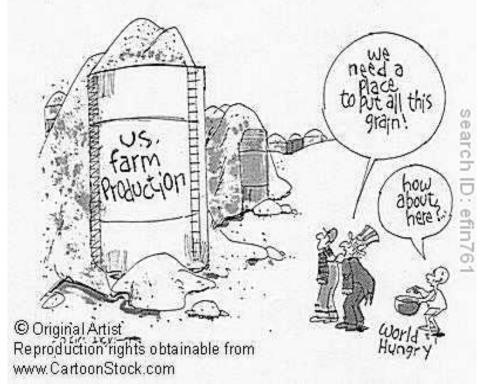
Type III – Seasons are not very pronounced; relatively dry from November to April, wet during rest of the year.


Type IV – Rainfall is more or less evenly distributed through the year.


How compatible is this with...

Reality and slightly "improved" reality!

More seriously "improved" reality!



The "mode" explained

Mode	Definition
0	Beginning and end using the "Simple method": planting dekad is the first dekad from dek_init when R >= E* k_init . Season ends when R<=E* k_init .
1	Beginning and end using the "Standard Franquin": if dint is the value of interval expressed in days, beginning is on the first day i after the 5th day of dek_init when R(i-dint)<=E(i-dint)* k_init and R(i+dint)>E(i+dint)*k_init; season ends when R(i-dint)>=E(i- dint)* k_init and R(i+dint) <e(i+dint)*k_init.< td=""></e(i+dint)*k_init.<>
2	Beginning as in mode 0; end based on soil water balance.
3	Beginning as in mode 1 (" <i>standard Franquin</i> ") <mark>;</mark> end based on soil water balance.

Click to edit Master Thank you! Ext styles Second level Third level

, E