AMICAF/MOSAICC seminar ITCAF, Manila, 13-14 Sept. 2012

A general introduction to crop models

René Gommes rene.gommes@agro-impact.com

Overview

 There are models, models, models, models and models
 Turning a bit philosophical: some issues, considerations & conclusions

Models, models models, models and models

- Process-oriented simulation models
- Statistical
- Non-parametric
- FAO AgroMetShell, the "ancestor" of wabal
- "Other"

Simulation models: the scope

- Realistically & "scientifically" mimick actual physiological mechanisms and interactions of plant & environment, incl. management
- Accurate and versatile
- calibration switches tweak model into good **qualitative** fit to reality
- Models come in "schools" or "families": EPIC, CERES, WOFOST (SUCROS, ARID, MACROS, ORYZA1...)

A word about the "inner workings" of models: variables, parameters, inputs...

- State variables (global): completely describe the state of the "system", e.g. biomass on day d in g m⁻²)
- Rates: the speed at which the state variables change (e.g. rate of change of biomass in g m⁻²d⁻¹
- Derived variables: computed from state variables (less fundamental nature, e.g. Leaf Area Index, in m² of leaves per m² land area, computed from biomass)
- Parameters or "switches": constants that describe links between variables and rates
- Input variables: measure external action on the system (e.g weather & management)

More the "inner workings"

- Models contain many ad hoc functions; they are often less "scientific" than assumed
- In practice, models are computer programmesTime step is usually daily
- Many models compute various "biomasses": water limited (B_W), energy limited (B_E) and nutrient limited (B_N) and adopt min(B_W, B_E, B_N) as final yield proxy
- The "budget nightmare": energy-water, nutrients, biomass

Using a model for forecasting: past and future weather

Yield forecast at different times .

Simulation models: typical components

- Biomass accumulation (assimilation)
- Phenology (or development) and biomass partitioning (incl. Respiration and root development)
- Nutrient budget
- Soil & plant water budget

Photosynthesis: orders of magnitude

- 6CO₂ + 12H₂O → C₆H₁₂O₆ + 6O₂ + 6H₂O 2880 KJ mol⁻¹ sugar (1 mol = 180 g)
 22g CO₂ + 18 g H₂O →
 - $15 \text{ g } \text{C}_{6}\text{H}_{12}\text{O}_{6} + 16 \text{ g } \text{O}_{2} + 9 \text{ H}_{2}\text{O}$
- [CO₂] ~400 ppmv ~775 mg/m³ ~0.75 g/m³
- 1 m² of leaf can produce 1 g of sugar in 1 hour, req. 22/15 ~ 1.5 g CO₂
- 1.5 g CO_2 is the amount contained in 2 m³ of air

Photosynthesis: potential biomass (Monteith)

• DM = H . Eff_{H} . Eff_{I} . Eff_{I}

 $DM = dry matter g ha^{-1} day^{-1}$

- H global net radiation J ha⁻¹ day⁻¹ $\sim 50\%$ of extraterrestrial radiation
- Eff_H, fraction of H which is PAR (~0.33-0.50)
- Eff_a, interception efficiency, f(LAI, geometry... ~ 0.33 to 0.50)
- Eff_c, conversion efficiency, 2 g DM/MJ for C3 plants (3 for C4)

Photosynthesis: overall efficiency

- Compare
- Chemistry: 1 MJ yields 60 g sugar (2880 kJ ~ 3 MJ / 180 g)
- Biology: 1 MJ yields 2 g DM
- This is because (and/or) biomass is not just "accumulated"
 - About 50% of sugar is consumed in dark and photorespiration: maintain the plant structure
 - DM is not only sugar, but also "value added" fats, starch, cellulose, proteins...
 - Maintenance respiration (maintain the "structure")
 - Develop & live (grow roots, flowers, attract insects, repair damage...)
- Net efficiency of a leaf is about 5% of incident radiation.
- Canopy Incident sunlight to biomass efficiency: from 1 % (typical crop) to 8% (sugarcane). Most plants store 0.25-0.50% in the product (grain...)

Photosynthesis: function of absorbed PAR (Ha=Ha of leaf)

Photosynthesis: the equations

 $F_n = F_d + (F_m - F_d) (1 - \exp(-\frac{E_{k.}R_{HC}}{F_m}))$

	2. E			
			C3-plants	C4-plants
Net assimilation	Kg CO ₂ / Ha leaf / hour	Fn		
Maximum rate of	Kg CO ₂ / Ha leaf / hour	F _m	30	60
net assimilation			(15 to 50)	(30 to 90)
Net assimilation in the dark	Kg CO ₂ / Ha leaf / hour	F _d	-3	-6
Absorbed radiant flux in the 400-700 nm range	joule / m² / s	R _{HC}		
Efficiency at light comp. point	Kg C0 ₂ / Joule	E _{lc}	0.25	0.30
Temperature- dependent F _m ?			No	Yes

Simulation models: typical components

- Biomass accumulation (assimilation)
- Phenology (or development) and biomass partitioning (incl. Respiration and root development)
- Nutrient budget
- Soil & plant water budget

Phenology (1/2)

• Typically one of the most empirical components of models

 $\sum (T - T_b)$ where

Day on which stage *S* is reached

Planting day

GDDs =

- Growing Degree-Days (GDD) or Sums of Degree-Days "cannot go wrong"
- GDD miss all qualitative effects (more suitable for climate where heat is limiting)

T - T b is taken as 0 when T < T b

T is taken as T_u when $T > T_u$

Sample GDD from Wikipedia

Common name	Latin name	Number of growing degree days baseline 10 °C
D	Diana la calcada	1100-1300 GDD to maturity depending on
Dry beans	Phaseolus vulgaris	cultivar and soil conditions
		125-162 GDD to emergence and 1290-1540
Barley	Hordeum vulgare	GDD to maturity
		130 GDD to emergence and 1400-1500 GDD
Sugar Beet	Beta vulgaris	to maturity
		143-178 GDD to emergence and 1550-1680
Wheat (Hard Red)	Triticum aestivum	GDD to maturity
Oats	Avena sativa	1500-1750 GDD to maturity
European Corn Borer		207 - Emergence of first spring moths
Corn (maize)	Zea mays	2700 GDD to crop maturity
Forsythia	Forsythia spp.	begin flowering at 1-27 GDD
Common lilac	Syringa vulgaris	begin flowering at 80-110 GDD
Red maple	Acer rubrum	begins flowering at 1-27 GDD
Black locust	Robinia pseudoacacia	begins flowering at 140-160 GDD
Purple loosestrife	Lythrum salicaria	begins flowering at 400-450 GDD
Sumac	Rhus typhina	begins flowering at 450-500 GDD
Butterfly bush	Buddleia davidii	begins flowering at 550-650 GDD

Simulation models: typical components

- Biomass accumulation (assimilation)
- Phenology (or development) and biomass partitioning (incl. Respiration and root development)
- Nutrient budget
- Soil & plant water budget

Nitrogen (as dealt with in CropSyst)

- Proteins contain about 20% of N, i.e. 0.5 and 1.5% of the dry matter. N_{max} is the maximum (reference) crop nitrogen concentration and N_{w} the actual concentration (both Kg N (Kg DM)⁻¹
- "Growth" N demand on day J (in Kg N Ha⁻¹)

$$GD = N_{\max} \times \Delta W$$

• Demand deriving from the current deficit in the plant at the beginning of J when the biomass is W (Kg DM Ha⁻¹)

$$DD = W(N_{\rm max} - N_{\rm W})$$

• Total demand

Nitrogen-limited daily biomass accumulation (CropSyst)

Simulation models: typical components

- Biomass accumulation (assimilation)
- Phenology (or development) and biomass partitioning (incl. Respiration and root development)
- Nutrient budget
- Soil & plant water budget

Water budget

- Water supply depends on the amount of water (rainfall, irrigation) that enters the soil
- Soil water availability depends on the balance between the strength with which water is held in the soil and the strength of the demand exerted by the plant
- Many different levels of complexity of soil water budget

- Main driving force for water demand is the evaporative demand of the atmosphere, measured by the evapotranspiration potential (ETP)
- ET is often partitioned between E and T (for instance):

E = ET – T T = LAI * ET if LAI<1 T = ET when LAI>=1

Relative ET as a function of relative soil moisture

Relative soil moisture

Water/CO2 and energy budgets are connected

Water use and photosynthesis: relative assimilation **Vs.** relative 23 as a function of mesophyll

resistance

Models, models models, models and models

- Process-oriented simulation models
- Statistical
- Non-parametric
- FAO AgroMetShell
- "Other"

	Α	В	С	D	E	F	G		Н	I	J	K	L	М	N
1	lon	lat	yield	crop	year	RK_EA	pc_impr	pc	_nat	pc_chem	pc_pure	pc_tmr	pc_tmr_lo	pc_tlr	pc_tlr_los
196	39.4017	10.9162	1.725	BARLEY	2009	3040902502	0		0	0	100	0	0	0	0
197	39.1737	10.6998	0.555	BARLEY	2009	3041300603	0		28	0	100	0	0	0	0
198	39.3617	10.5569	2.252	BARLEY	2009	3041400502	12		0	0	100	0	0	0	0
199	39.2460	10.4127	2.26	BARLEY	2009	3041401205	0		0	0	100	0	0	0	0
200	39.5535	10.8537	2.034	BARLEY	2009	3041500704	0		95	0	100	0	0	0	0
201	39.4298	10.5723	2.477	BARLEY	2009	3041501803	0		0	0	100	0	0	0	0
202	39.2787	10.8193	1.783	BARLEY	2009	3042000101	0		31	0	100	2	50	2	25
203	3						0						0	0	0
204			4			1				1 🗖				, 0	0
205	3	12			th	Cal	ПЛ	r	21		n r	na			0
206	3													<u> </u>	0
207	3													0	0
208	39.2976	10.0710	0.655	BARLEY	2009	3050400502	0		25	25	100	0	0	0	0
209	39.7121	10.4542	1.164	BARLEY	2009	3050500207	0		30	9	100	0	0	4	~ 30
210	39.5607	10.3835	0.673	BARLEY	2009	3050500905	0		37	18	96	0	0	0	0
211	39.5575	10.5525	0.367	BARLEY	2009	3050600603	0		29	0	100	0	0	0	0
212	39.6629	10.5645	1.114	BARGEY	2009	3050600903	0		52	- 0	100	7	46	0	0
213	39.8002	10.6705	0.69	BARLEY	2009	3050700403	0		33	0	88	0	0	0	0
214	39.8386	10.5614	0.265	BARLEY	2009	3050701204	615							\sim	0
215	39.9382	10.4337	9.262	BARLEY	0 2009	3050800404								$\langle \chi \rangle$	0
216	39.8490	10.3105	1.141	BARLEY	2009	3050801105								n	
						•			0-0.0 < 0.5 < 1 < 2 < 2.5 < 3 < 3.5 < 4	11 T/Ha ; ;					

Regression "models"

Wheat yield (T/Ha) = $15.44 + 0.0231 X_1 - 0.0493 X_2 + 3.75 X_4$

X₁ is November and December rainfall (mm)
X₂ is July average temperature in C
X₄ is July NDVI

Regression "models"

- Calculations are simple and data requirements, limited
 - poor performance outside the range of calibration values
- different equations **sometimes** needed for each forecasting time and frequent annual re-calibration

Regression "models"

Best results are achieved with ...

- trend correction
- value added-variables (ETA)
- uncorrelated variables (PCA, fertilizer)
- a variable for maximum local yield (potential yield or other)
- good agronomic analyses better than statistical significance
- "real factors" (NDVI)

Models, models models, models and models

- Process-oriented simulation models
- Statistical
- Non-parametric
- FAO AgroMetShell
- "Other"

Descriptive: yield T/Ha

	June average per	sunshine hours r day
12.34	6 hours and less	more than 6 hours
March total rainfall		
75 mm and less	5 土	6±2
More than 75 mm	8土1	10±2

Some rainfall profiles (Zimbabwe)

Comparison of methods

Mothod		R ²				
wethou	Trend	Method	Total			
Average Rainfall		0.4563	0.6265			
Water Balance	0.1702 +	0.5653	0.7355			
Threshold		0.5311	0.7013			
Clustering		0.5692	0.7394			

Descriptive methods: advantages

- clustering of combination of mix of time-series and cross-sectional data
- independent of type of functional relation between variables and yield (non-parametric)
- confidence intervals are easy to derive
- require little data processing in operational mode

Models, models models, models and models

- Process-oriented simulation models
- Statistical
- Non-parametric
- FAO AgroMetShell
- "Other"

The following persons contributed to the program:

René Gommes (FAOINDEX, FAOMET and FAOUtils and FAOCast) Eric Pfirman (part of the image software) Linda See, Andres and Paul Loth.... (SEDI) Elijah Mukhala (Documentation) Marcello Donatelli, ISCI Tecniche Colturali Fred Snijders (Windisp Image types) Robin Clark (FAOCast) Silvio Griguolo (Addapix) Jurgen Giessler (Formulas for data conversion) Peter Hoefsloot (SEDI and Database for DOS)

Testing

Rene Gommes, Michele Bernardi, Stephen Cofield, Oscar Rojas, Elijah Mukhala, Herbert Matsikwa, Olga Liefert Nino, Fahim Zaheer, Rabah Lekhal

🖌 ок

wabal

(wb1, wb2, wb3)

GWSI-Viewer

wabal (water balance) is a linux/windows command-line impleme FAO water balance as currently computed in AgroMetShell (FAO), CMBox¹ (FAO and EC) and some other tools. It is proposed here in wb2, wb3) that differ only in the way in which inputs and outputs a

Version 1.0.8

About...

Overall philosophy of AMS

Semi-quantitatively assess weather factors relevant for crop production and express them as valueadded agronomically meaningful indices (water balance variables, WBV)
Regress yields against WBVs, and use empirical regression equation for simulation
A detailed study was done in Morocco using the approach, without major difficulties

Models, models models, models and models

- Process-oriented simulation models
- Statistical
- Non-parametric
- FAO AgroMetShell
- "Other"

"Other" models (in random order!)

- Subjective with/without a "system"
- Pollen counts
- Counting bales
- CO2 gradients
- Biometric methods (stem diameter, light interception)

Overview

 There are models, models, models, models and models
 Turning a bit philosophical: some issues, considerations & conclusions

A tool for each scale: national Total rice yield R²=0.96

A tool for each scale: typology Boro/Aman/Aus yield R²=0.79 - 0.86

A tool for each scale: local Rajshahi T-Aman hybrid/local R² = 0.11 - 0.35

12 sources of errors: 1-5

- 1 observation errors in the primary input data
- 2 processing errors in the input data, including transmission and transcription
- 3 biases introduced by processing : estimation of missing data, derivation of indirect measures (radar rainfall, radiation...).
- 4 space and time "scale" errors
- 5 errors in eco-physiological crop parameters

12 sources of errors: 6 to 8

- 6 simulation model errors
- 7 errors due to non-simulated factors (pests, weather at harvest)
- 8 errors in the agricultural statistics used for the calibration

12 sources of errors: 9 to end

9 calibration errors (choice of statistical relation between crop model output and agricultural statistics) 10 statistical errors in the "future data" 11"second order" errors (when management decisions use early crop forecasts) 12 conflicts between results of different forecasting techniques

How good is my model? (1/2)

- The standard wording usually resorted to includes calibration, evaluation, validation, verification
- Calibration: adjustment of parameters until the desired results are achieved (proxies!)
- Evaluation is descriptive: how realistic, detailed, "balanced/coherent", "honest" is the model?

How good is my model? (2/2)

- Validation: a model must be validated at the same spatial scale and with the same type of data as those that will be available in operational work; it is the sequence of tests and checks that convince the user that the model is suitable for the intended purpose
- Verification (post-factum): after I have been using the model for some time and I trust it, if it is accurate and precise, I consider it is verified.

Accuracy and precision

How far can validation be stretched?

How far can validation be stretched? (irrigated *durum*, Morocco)

Conclusions (1/2)

- There is no shortage of simple and complex models to simulate/forecast crop yields for all situations
- Model choice is conditioned/constrained more by data availability than by lack of tools
- Crop modelling and especially forecasting is art as much as science

Conclusions (2/2)

 No model remains good forever; in fact, few models remain "good" for more than 3 years!

Model calibration, validation and verification are mostly subjective exercises

 There is no absolute hierarchy of models; model suitability & quality must be judged based on experience

Training course on crop growth/yield modelling JRC/Ispra, 10 and 11 Nov. 2010

Thank you!

